ПРОГРАММА ДИСЦИПЛИНЫ

ЕН.Ф.01 МАТЕМАТИКА

Направление подготовки: 540100.62 Естественно-научное образование
Профессионально-образовательные профили: химия (540101), биология (540102)
Степень (квалификация) выпускника: бакалавр естественно-научного образования (химия, биология)
Пояснительная записка

Роль математики в различных областях естествознания складывалась исторически. В современный период роль математических методов при изучении явлений природы возрастает. Эти методы теперь широко используются при решении задач в химии, биологии и географии. Курс математики, изучаемый на первом курсе биолого-химического факультета, содержит основы аналитической геометрии, линейной алгебры, математического анализа и теории вероятностей.

В аналитической геометрии геометрические объекты — кривые и поверхности изучаются при помощи алгебры. В основе такого изучения лежит метод координат. Всякому геометрическому свойству кривой или поверхности отвечает при этом определенное алгебраическое соотношение. Изучаются прямая на плоскости и в пространстве, кривые и поверхности второго порядка.

Из элементов линейной алгебры рассматривается теория определителей и её применение к решению систем линейных алгебраических уравнений.

Математический анализ является аппаратом для изучения различных процессов. В ходе которых изменяются изучаемые величины (длина, скорость, температура и т.д.). Рассматриваются основные понятия (предел, непрерывность, производная и интеграл) и их применение к решению задач в химии и биологии. В теории обыкновенных дифференциальных уравнений излагаются методы решения типовых задач, разъясняющих основные идеи, понятия, теоретические факты и их практическое применение.

В основе теории вероятностей лежат объективные закономерности, присущие случайным массовым явлениям. Рассматриваются методы вычисления вероятностей сложных событий по известным вероятностям некоторых простейших событий, полученных из опыта или с помощью теоретической схемы. Основные понятия теории вероятностей и математической статистики иллюстрируются на примерах практических приложений.

1. Цели и задачи дисциплины:

Математические методы исследования получили широкое распространение в естествознании, в связи с чем повысилось значение математической подготовки студентов, обучающихся по специальности химия и биология. Одна из основных задач курса математики состоит в том, чтобы студенты овладели определенным запасом сведений по математике (понятий, теорем, методов), необходимых для изучения наук, и научились применению этих знаний. Выработка навыков построения математических моделей изучаемых явлений, повышение уровня логического мышления и математической культуры также являются задачами курса математики.

2. Требования к уровню усвоения дисциплины:

Большинство химических и биологических закономерностей установлены экспериментальным путем. Ясно поэтому, насколько важно умение математически обрабатывать результаты наблюдений. Грамотная, квалифицированная обработка результатов наблюдений и экспериментов всегда базировалась на теории вероятности и математической статистике. Многие химические и биологические эксперименты трудоемки и дорогостоящи, поэтому, прежде чем проводить такой эксперимент, его необходимо планировать. Стадия планирования эксперимента опирается на математический анализ, на умелое обращение с переменными величинами, входящими в эксперимент.

В установлении теоретических законов важную роль играет математическое моделирование исследования. Математическая модель изучается математическими
средствами. Здесь важно уметь работать с математическими объектами (точки, кривые, уравнения, множества, многочлены, пределы и т. д.), входящими в модель. Таким образом, знание теории и владение практическими навыками являются требованиями к уровню усвоения содержания дисциплины.

В результате изучения данной дисциплины студенты должны знать:
- основные алгебраические структуры;
- теорию матриц и определителей;
- уравнения прямых, плоскостей, кривых II порядка;
- понятия предела, непрерывности;
- основные понятия дифференциального и интегрального исчисления;
- методы решения дифференциальных уравнений;

уметь:
- исследовать и решать системы линейных уравнений;
- дифференцировать и интегрировать основные элементарные функции;
- исследовать функции и строить графики;
- применять интегральное и дифференциальное исчисления;
- решать простейшие дифференциальные уравнения;
- решать задачи теории вероятности и математической статистики.

3. Объем дисциплины и виды учебной работы:

<table>
<thead>
<tr>
<th>Вид учебной работы</th>
<th>Всего часов</th>
<th>Семестры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая трудоемкость дисциплины</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Аудиторные занятия</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Лекции</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Практические занятия (ПЗ)</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Семинары (С)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лабораторные работы (ЛР)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>И (или) другие виды аудиторных занятий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Самостоятельная работа (СР)</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Курсовые работы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Расчетно-графические работы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Рефераты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>И (или) другие виды самостоятельной работы</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Вид итогоового контроля
(зачет, экзамен): Экзамен
4. Содержание дисциплины:

4.1 Разделы дисциплины и виды занятий

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Разделы дисциплины</th>
<th>Лекции</th>
<th>Практ. занятия или семинары</th>
<th>Лабораторные работы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Аналитическая геометрия</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Линейная алгебра</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Введение в математический анализ</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Дифференциальное исчисление</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Интегральное исчисление</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Дифференциальные уравнения</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Теория вероятностей</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Математическая статистика</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>72</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Содержание разделов дисциплины

1. Аналитическая геометрия
Системы координат на плоскости. Простейшие задачи на плоскости. Уравнение прямой на плоскости. Разные уравнения прямой. Угол между прямыми. Условие параллельности и перпендикулярности прямой. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола. Уравнение плоскости. Прямая в пространстве. Поверхности второго порядка.

2. Линейная алгебра
Основные сведения о матрицах. Операции над матрицами. Обратная матрица. Определители и их свойства. Система линейных алгебраических уравнений: основные понятия и определения. Система трёх линейных алгебраических уравнений с тремя неизвестными. Формулы Крамера.

3. Введение в математический анализ
Элементы теории множеств. Числовые множества. Множество действительных чисел. Абсолютная величина действительного числа и её свойства. Числовые промежутки. Окрестность точки. Понятие функции. График функции. Способы задания функций. Основные характеристики функций. Обратная функция. Сложная функция. Основные элементарные функции и их графики. Числовые последовательности. Предел числовой последовательности. Число e. Натуральные логарифмы. Предел функции в точке. Однносторонние пределы. Предел функции на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Связь между функцией, её пределом и бесконечно малой функцией. Основные теоремы о пределах. Замечательные пределы. Непрерывность функции в точке. Непрерывность функции в интервале и на отрезке. Точки разрыва функции и их классификация.

4. Дифференциальное исчисление
Задачи, приводящие к понятию производной. Определение производной; её геометрический и механический смысл. Уравнение касательной и нормали к прямой. Связь между непрерывностью и дифференцируемостью функции. Правила дифференцирования. Производная сложной и обратной функции. Производные основных элементарных функций. Логарифмическое дифференцирование. Производные высших порядков. Дифференциал функции. Применение дифференциала к приближенным вычислениям. Дифференциалы высших порядков. Основные теоремы дифференциального исчисления: Ферма, Ролля, Лагранжа. Правило Лопиталя. Применение производной к исследованию функций: возрастание и убывание функций, максимум и минимум функций, наибольшее и наименьшее значение функций на отрезке, выпуклость графика функции, точки перегиба. Асимптоты графика функции. Общая схема исследования функции и построения графика. Формула Тейлора.

5. Интегральное исчисление
Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла. Таблица основных интегралов. Основные методы интегрирования: непосредственное интегрирование, интегрирование подстановкой, интегрирование по частям. Интегралы, содержащие квадратный трехчлен. Интегрирование простейших рациональных дробей. Интегрирование рациональных дробей. Интегрирование тригонометрических выражений. Понятие определённого интеграла. Геометрический и физический смысл определенного интеграла. Формула Ньютон-Лейбница. Основные свойства определенного интеграла. Интегрирование подстановкой. Интегрирование по частям. Несобственные интегралы. Приложения определенного интеграла.

6. Дифференциальные уравнения
Основные понятия. Дифференциальные уравнения первого порядка. Задача Коши. Уравнения с разделяющимися переменными и приводящиеся к ним. Линейное уравнение. Комплексные числа. Геометрическое изображение комплексных чисел. Формы записи комплексных чисел. Действия над комплексными числами. Дифференциальные уравнения второго порядка с постоянными коэффициентами и правой частью специального вида.

7. Теория рядов
Понятие числового ряда и его сходимости. Сумма ряда. Признаки сходимости числовых рядов с положительными членами. Знакопеременные ряды, их абсолютная и условная сходимость. Признаки сходимости знакопеременных рядов. Свойства абсолютно сходящихся рядов. Понятие функционального ряда и его области сходимости. Равномерная сходимость. Функциональные свойства суммы ряда. Степенной ряд и его область сходимости. Ряд Тейлора и ряд Маклорена. Разложения основных элементарных функций в степенные ряды. Применение степенных рядов. Ряды Фурье. Применение рядов Фурье.

8. Теория вероятностей
Случайные события. Классическое определение вероятности. Применение элементов комбинаторики к нахождению вероятностей. Геометрическая вероятность. Относительная частота. Статистическое определение вероятности. Условная вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формулы Байеса. Приложения в биологии. Дискретные случайные величины и их числовые характеристики. Основные законы распределения дискретных случайных величин (биноминальное распределение, распределение Пуассона). Непрерывные случайные величины. Интегральная функция распределения. Дифференциальная функция распределения. Математическое ожидание и дисперсия непрерывной случайной величины. Основные законы распределения непрерывных случайных величин (равномерное распределение, нормальный закон распределения). Закон больших чисел Чебышева. Предельные теоремы теории вероятностей (центральная предельная теорема, локальная и интегральная предельные теоремы Лапласа).

9. Элементы математической статистики
Генеральная совокупность и выборка. Статистическое распределение выборки. Полигон. Гистограмма. Оценка параметров генеральной совокупности по её выборке. Генеральная и выборочная средние и методы их расчета. Генеральная и выборочная дисперсии. Оценка параметров распределения. Доверительные интервалы для параметров нормального распределения. Проверка статистических гипотез. Критерий согласия Пирсона. Линейная корреляция. Прямые регрессии.

5. Лабораторный практикум.

Не предусмотрен.

6. Учебно-методическое обеспечение дисциплины:

6.1. Рекомендуемая литература

а) основная литература:

б) дополнительная литература:

6.2 Средства обеспечения освоения дисциплины:

Государственные образовательные стандарты и государственные образовательные программы.

7 Материально-техническое обеспечение дисциплины.

Не предусмотрено

8 Методические рекомендации по организации изучения дисциплины.

8.1. Для преподавателей:

Необходимо сделать акцент на вопросах, ближе всего стоящих к профессиональным интересам студентов.

Лекция - главное звено дидактического цикла обучения. Её цель - формирование у студентов ориентировочной основы для последующего усвоения материала методом самостоятельной работы. Содержание лекции должно отвечать следующим дидактическим требованиям:

- изложение материала от простого к сложному, от известного к неизвестному;
- логичность, четкость и ясность в изложении материала;
о возможности проблемного изложения, дискуссии, диалога с целью активизации деятельности студентов;
о тесная связь теоретических положений и выводов с практикой и будущей профессиональной деятельностью студентов.

Лекция по теме должна завершаться обобщающими выводами.

Цель практических занятий состоит в выработке устойчивых навыков решения основных примеров и задач дисциплины, на которых основана теория лекционного курса.

Практические занятия проводятся по узловым и наиболее сложным вопросам (темам, разделам) учебной программы. Они могут быть построены как на материале одной лекции, так и на содержании обзорной лекции, а также по определённой теме без чтения предварительной лекции. Главная и определяющая особенность любого практического занятия – наличие элементов дискуссии, проблемности, диалога между преподавателем и студентами и самими студентами.

В конце практического занятия рекомендуется дать оценку всей работы, обратив особое внимание на следующие аспекты:
о качество подготовки;
о степень усвоения знаний;
о активность;
о положительные стороны в работе студентов;
о ценные и конструктивные предложения;
о недостатки в работе студентов;
о задачи и пути устранения недостатков.

По курсу практических занятий рекомендуется проведение контрольных работ и расчетно-графических домашних заданий, оценка которых осуществляется по пятибалльной системе.

Организуя самостоятельную работу, необходимо постоянно обучать студентов методам такой работы.

При проведении итоговой аттестации студентов важно всегда помнить, что систематичность, объективность, аргументированность – главные принципы, на которых основаны контроль и оценка знаний студентов. Проверка, контроль и оценка знаний студента, требуют учета его индивидуального стиля в осуществлении учебной деятельности. Знание критериев оценки знаний обязательно для преподавателя и студента.

8.2 Для студентов:

Студентам предлагается использовать указанную литературу и методические рекомендации, разработанные сотрудниками кафедры математического анализа ТГПУ для более прочного усвоения учебного материала, изложенного на лекциях, а также для изучения материала, запланированного для самостоятельной работы. Студентам необходимо выполнить индивидуальные задания по основным темам курса. Задания, вынесенные на самостоятельную работу, проверяются преподавателем в течение семестра. Оценки за индивидуальные задания и самостоятельную работу учитываются при выставлении оценок на экзаменах.

Целью самостоятельной работы, т.е. работы, выполняемой студентами во внеаудиторное время по заданию и руководству преподавателя является глубокое понимание и усвоение курса лекций и практических занятий, подготовка к выполнению контрольных работ, к выполнению семестрового задания, к сдаче зачета и (или) экзамена, овладение профессиональными умениями и навыками деятельности, опытом творческой, исследовательской деятельности.

Для успешной подготовки и сдачи зачета (экзамена) необходимо проделать следующую работу:
• Изучить теоретический материал, относящийся к каждому из разделов.
- Выработать устойчивые навыки в решении типовых практических заданий.
- Выполнить контрольные работы, проводимые в течение семестра.

9.3. Перечень контрольных вопросов и заданий для самостоятельной работы.

1. Преобразование системы координат (параллельный перенос осей координат, поворот осей координат).
2. Общее уравнение линий второго порядка.
3. Цилиндрические поверхности.
4. Поверхности вращения. Конические поверхности.
5. Применение эквивалентных бесконечно малых функций.
6. Гиперболические функции и их производные.
7. «Берущиеся» и «неберущиеся» интегралы.
8. Механические приложения определённого интеграла (давление жидкости на вертикальную пластинку, вычисление статических моментов и координат центра тяжести плоской фигуры).
9. Приближенное вычисление определенного интеграла (формула прямоугольников, формула трапеций, формула парабол).
10. Линейное уравнение. Метод И. Бернулли.
11. Уравнение Я. Бернулли.
12. Геометрическое распределение дискретной случайной величины.
13. История возникновения и развития теории вероятностей.
14. Использование теории вероятностей для обработки экспериментальных данных.
15. Распределение случайных ошибок измерения.
16. Дауерные случайные величины.

8.4. Перечень вопросов к зачёту (экзамену)

1. Полярные координаты. Связь с декартовыми координатами.
2. Расстояние между двумя точками на плоскости.
3. Деление отрезка в данном отношении.
4. Уравнение прямой с угловым коэффициентом.
5. Общее уравнение прямой.
6. Уравнение прямой в отрезках.
7. Уравнение прямой, проходящей через данную точку в данном направлении.
8. Угол между прямыми, условие параллельности и перпендикулярности прямых.
9. Уравнение прямой, проходящей через две данные точки.
10. Нормальное уравнение прямой.
11. Расстояние от точки до прямой.
12. Окружность.
13. Эллипс.
14. Гипербола.
15. Парабола.
16. Понятие множества. Операции над множествами. Числовые множества.
17. Понятие функции. Способы задания функции.
18. Основные характеристики функции (четность и нечетность, монотонность, ограниченность и периодичность).
19. Обратная функция и её график.
20. Сложная функция.
21. Числовая последовательность и её предел.
22. Предел функции.
23. Бесконечно малые и бесконечно большие функции. Связь между ними.
24. Теорема об арифметических операциях над пределами.
25. Связь между функцией, её пределом и бесконечно малой функцией.
26. Теорема об единственности предела.
27. Первый замечательный предел.
28. Непрерывность функции в точке.
29. Теорема об арифметических операциях над непрерывными функциями.
30. Непрерывность сложной функции.
31. Определение производной, её геометрический и механический смысл.
32. Связь между дифференцируемостью и непрерывностью функции.
33. Правила дифференцирования.
34. Производная сложной функции.
35. Производная обратной функции.
36. Таблица производных.
37. Неявное задание функции. Производная неявной функции.
38. Параметрическое задание функции. Вычисление её производной.
39. Логарифмическое дифференцирование.
40. Дифференциал функции и его геометрический смысл.
41. Производные высших порядков.
42. Дифференциалы высших порядков.
43. Теорема Ферма.
44. Теорема Ролля.
45. Теорема Лагранжа.
46. Правило Лопиталя.
47. Определители и их свойства.
48. Решение систем линейных алгебраических уравнений.
Программа дисциплины составлена в соответствии с государственным образовательным стандартом высшего профессионального образования по направлению подготовки 540100.62 Естественно-научное образование.

Программу составил:
Старший преподаватель
кафедры математического анализа, к.пед.н. Жидова Л.А.

Программа дисциплины утверждена на заседании кафедры математического анализа.
Протокол № 1 от «31» 08 2016 г.

Заведующий кафедрой Лавров П.М.

Программа дисциплины одобрена методической комиссией физико-математического факультета ТГПУ
Протокол № 1 от «31» 08 2016 г.

Председатель методической комиссии ФМФ Разина Г.К.