РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.1 «Современная электродинамика»

Трудоемкость в зачетных единицах: 5

Направление подготовки: 03.04.02 Физика
Направленность (профиль) подготовки: Теоретическая физика
Квалификация (степень) выпускника: магистр
Форма обучения: очная
1. Цели изучения учебной дисциплины.
Цель настоящего курса - расширение и углубление представлений о свойствах электромагнитного поля в вакууме и веществе, полученных в курсе общей физике, формирование целостной картины физических представлений и явлений, связанных с классическим электромагнитным полем. Студент должен увидеть, что многочисленные явления и законы электродинамики, изучавшиеся в общем курсе физики, взаимосвязаны и являются следствием фундаментальных общих принципов.

2. Место учебной дисциплины в структуре образовательной программы
Курс «Современная электродинамика» входит в Блок-1 - дисциплины, вариативная часть, «дисциплины по выбору студента» программы магистратуры. Преподавается предмет в третьем семестре. Программа подготовлена в соответствии с требованиями ФГОС ВО. Для изучения дисциплины необходимы знания по математике, которые были получены студентами. Предполагается, что студенты уже знакомы с основными принципами электродинамики в рамках курса общей физики. Курс «Современная электродинамика» является основным для всех дисциплин теоретической физики, которые изучаются в магистратуре.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП.
Выпускник магистратуры должен обладать следующими компетенциями.

- Общекультурными (ОК): ОК-1, ОК-2, ОК-3.
- Профессиональными (ПК): ПК-1.

В процессе изучения курса «Современная электродинамика» магистрант должен:
знать актуальные проблемы науки и техники, возникающие в области применения классической электродинамики, физическое содержание законов электродинамики, понимать основные принципы классической электродинамики; свойства пространства и времени, лежащие в основе специальной теории относительности;
уметь формулировать основные определения предмета; применять законы и уравнения классической электродинамики для конкретных физических ситуаций; проводить необходимые математические преобразования при решении задач; объяснять содержание фундаментальных принципов и законов, а также способы решения задач;
обладать навыками применения общих методов классической электродинамики к решению конкретных задач.

4. Общая трудоемкость дисциплины - 5 зачетных единиц и виды учебной работы.

<table>
<thead>
<tr>
<th>Вид учебной работы</th>
<th>Трудоемкость (в соответствии с учебным планом) (час)</th>
<th>Распределение по семестрам (час)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего 180</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>Аудиторные занятия</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>Лекции</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Практические занятия</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Семинары</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лабораторные работы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Другие виды аудиторных занятий</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Другие виды работ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Самостоятельная работа</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>Курсовой проект (работа)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Расчетно-графические работы</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Содержание программы учебной дисциплины.
5.1. Содержание учебной дисциплины.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Раздел дисциплины</th>
<th>Аудиторные занятия</th>
<th>Самостоятельная работа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Всего</td>
<td>Лекции</td>
</tr>
<tr>
<td>1</td>
<td>Уравнения движения заряженных частиц.</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Уравнения электромагнитного поля.</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Теория электромагнитного излучения.</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Электродинамика релятивистских частиц.</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Электромагнитные явления в астрофизике.</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Обратные задачи электродинамики.</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Итого:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Час/зач. ед 64/1.8</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

5.2. Содержание разделов дисциплины

1. Уравнения движения заряженных частиц. Функция Лагранжа для заряда. Уравнения движения заряженной частицы. Сила Лоренца. Решение уравнения движения в однородном магнитном поле.
2. Уравнения электромагнитного поля. Уравнения Максвелла. Интегральная форма уравнений Максвелла.
3. Теория электромагнитного излучения. Плоские волны. Плоская монохроматическая волна. Потенциалы Лиена-Вихерта. Поле движущегося точечного заряда. Свойства излучения релятивистского точечного заряда. Радиационное трение, уравнение Лоренца-Дирака. Рассеяние электромагнитных волн.
4. Электродинамика релятивистских частиц. Ускорители заряженных частиц. Синхротронное и ондукторное излучение. Лазеры на свободных электронах. Канализирование заряженных частиц в кристалле.
5. Электромагнитные явления в астрофизике. Излучение молекул. Спектр. Перенос излучения. Механизмы уширения спектральных линий. Электродинамика пульсаров.
6. Обратные задачи электродинамики. Зондирование. Обратная задача для поля точечного заряда. Обратная задача дипольного момента.

5.3. Лабораторный практикум: не предусмотрен учебным планом.

6. Учебно-методическое обеспечение самостоятельной работы по дисциплине.
6.1. Основная литература по дисциплине:

6.2 Дополнительная литература:
4. Успехи физических наук. (Периодическое издание).

6.3. Перечень ресурсов информационно-коммуникационной сети Интернет, необходимых для освоения дисциплины.
1. Мультимедиа материалы, иллюстрирующие физические эффекты и законы, открытие которых отмечено Нобелевскими премиями. Официальный сайт Нобелевской премии.
Образовательные ресурсы. URL: http://nobelprize.org/educational/physics/ (дата обращения: 31.03.2011)
2. Анимации физических явлений и учебные пособия. Университет Нового Южного Уэллса, Австралия. URL: http://www.animations.physics.unsw.edu.au/(дата обращения: 31.03.2011)

6.4. Рекомендации по использованию информационных технологий, включая перечень программного обеспечения и информационных справочных систем.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование раздела (темы) учебной дисциплины</th>
<th>Наименование материалов обучения, пакетов программного обеспечения</th>
<th>Наименование технических и аудиовизуальных средств используемых с целью демонстрации материала</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Уравнения движения заряженных частиц.</td>
<td>Лекционная аудитория</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Уравнения электромагнитного поля.</td>
<td>Лекционная аудитория</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Теория электромагнитного излучения.</td>
<td>Набор слайдов</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Электродинамика релятивистских частиц.</td>
<td>Лекционная аудитория</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Электромагнитные явления в астрофизике.</td>
<td>Кинофильм</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Обратные задачи электродинамики.</td>
<td>Лекционная аудитория</td>
<td></td>
</tr>
</tbody>
</table>

7. Методические указания для обучающихся по освоению дисциплины.
7.1. Методические рекомендации для студентов.
8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине.
8.1. Тематика рефератов (докладов, эссе): не предусмотрен учебным планом
8.2. Вопросы и задания для самостоятельной работы, в том числе групповой самостоятельной работы обучающихся:
 1. Уравнение Лоренца.
 2. Определения напряженности электрического и магнитного полей.
 3. Сила Лоренца.
 4. Первая пара уравнений Максвелла.
 5. Закон индукции Фарадея.
 6. Вторая пара уравнений Максвелла.
 7. Понятие тока смешения.
 8. Вторая пара уравнений Максвелла в интегральной форме.
 9. Теорема Гаусса.
 10. Свойства плоских волн.
 11. Круговая и линейная поляризация плоских волн.
 12. Эффект Доплера.
 13. Потенциалы Ленарда-Виккерса в трехмерной форме.
 14. Интенсивность излучения и мощность излучения заряда.
 15. Уравнение Лоренца-Дирака.
 16. Сечение рассеяния.
 17. Формула Томпсона.
 18. Рассеяние электромагнитных волн нерелятивистской системой зарядов.
 19. Виды ускорителей заряженных частиц.
 20. Основные свойства синхротронного и ондукторного узления.
 21. Принцип работы лазера на свободных электронах.
 22. Явление канализирования заряженных частиц в кристалле.
 23. Свойства излучения пульсаров.
 24. Основные причины уширения спектральных линий излучения.

8.3. Вопросы для самопроверки, диалогов, обсуждений, дискуссий, экспертиз:
 1. Системы единиц в электродинамике.
 2. Движение заряженной частицы в однородном магнитном поле.
 3. Вывод уравнения Лоренца.
 4. Теорема Гаусса.
 5. Свойства плоских волн.
 6. Интенсивность излучения и мощность излучения заряда.
 7. Вывод формулы Томпсона.
 8. Принцип работы синхротрона.
 9. Принцип работы лазера на свободных электронах.
 10. Плоскостное и аксиальное канализирование заряженных частиц в кристалле.
 11. Принцип работы радара.
 12. История открытия пульсаров.
 13. Самостоятельное решение задач – не менее 5 задач в неделю с отчетом перед преподавателем.

8.4. Примеры тестов: не предусмотрено

8.5. Перечень вопросов для промежуточной аттестации (к экзамену):
 1. Уравнения движения заряженных частиц.
2. Сила Лоренца.
3. Решение уравнения движения в однородном магнитном поле
4. Уравнения Максвелла.
5. Интегральная форма уравнений Максвелла.
6. Плоские волны.
7. Плоская монохроматическая волна.
8. Потенциалы Лиенара-Вихerta.
9. Поле движающегося точечного заряда.
10. Свойства излучения релятивистского точечного заряда.
11. Уравнение Лоренца-Дирака.
12. Рассеяние электромагнитных волн.
13. Ускорители заряженных частиц.
14. Синхротронное излучение.
15. Ондукторное излучение.
16. Лазеры на свободных электронах.
17. Канализирование заряженных частиц в кристалле.
18. Молекулярные спектры.
19. Перенос излучения.
20. Механизмы уширения спектральных линий.
21. Электродинамика пульсаров.
22. Обратная задача для поля точечного заряда. Обратная задача дипольного момента.

8.6. Темы для написания курсовой работы: не предусмотрено учебным планом.

8.7. Формы контроля самостоятельной работы:

Проверка индивидуальных заданий, контрольный опрос (на коллоквиумах устный или письменный), выполнение контрольных работ.

Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, федеральным государственным образовательным стандартом высшего образования по направлению подготовки: 03.04.02 Физика.

Рабочую программу учебной дисциплины составил доктор физ.-мат. наук, профессор кафедры теоретической физики

В.Я. Эпп

Рабочая программа учебной дисциплины утверждена на заседании кафедры теоретической физики, протокол № 9 от «15» __________ 2015 г.

Заведующий кафедрой теоретической физики

И.Л. Бухбиндер

Рабочая программа учебной дисциплины одобрена УМК физико-математического факультета ТГПУ, протокол №3 от «16» __________ 2015 г.

Председатель УМК физико-математического факультета

З.А. Скрипко