РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б.1.В.08
Теория и методика обучения физике

ТРУДОЕМКОСТЬ (В ЗАЧЕТНЫХ ЕДИНИЦАХ) - 6

Направление подготовки: 44.04.01 Педагогическое образование

Направленность (профиль) подготовки: Физическое образование

Квалификация (степень) выпускника: магистр

Форма обучения: очная
1. Цели изучения учебной дисциплины.

Целью дисциплины является подготовка студентов к преподаванию курса физики в разного вида учебных заведений на основе современных технологий и методик обучения; изучение методики изложения материала углубленного содержания; развитие будущего учителя (преподавателя) физики как грамотного специалиста, способного решать разного рода профессиональные задачи.

Задачи изучения дисциплины:
- углубить знания студентов по теории и методике обучения физике;
- использовать предметные знания при решении профессиональных задач;
- формировать способность применять современные методики и технологии организации и реализации образовательного процесса по физике на разных ступенях образования;
- включить магистрантов в самостоятельную разработку новых технологий и методик;
- формировать способность самообучения и самооценки учебной и преподавательской деятельности.

2. Место учебной дисциплины в структуре образовательной программы.

Данная учебная дисциплина входит в вариативную часть обязательных дисциплин профессионального цикла ФГОС ВО по направлению 44.04.01 Педагогическое образование, направленность подготовки – Физическое образование, квалификация – магистр.

Для изучения данной учебной дисциплины используются знания, приобретенные в результате освоения предшествующих дисциплин «Активные методы обучения в старшей школе», «Физика Земли и физические основы экологии».

Знания, полученные при изучении курса, могут использоваться при изучении дисциплины «Теория и практика учебного физического эксперимента».

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОП.

Данная дисциплина способствует формированию следующих компетенций магистранта, предусмотренных ФГОС ВО по направлению «44.04.01 Педагогическое образование».

Выпускник должен обладать следующими общекультурными компетенциями (ОК):
- готовностью действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения (ОК-2);
- способностью самостоятельно приобретать и использовать с помощью информационных технологий новые знания и умения, непосредственно не связанные со сферой профессиональной деятельности (ОК-5).

Выпускник должен обладать следующими общепрофессиональными компетенциями (ОПК):
- готовностью использовать знание современных проблем науки и образования при решении профессиональных задач (ОПК-2);

Выпускник, освоивший программу магистратуры должен обладать профессиональными компетенциями (ПК):

в педагогической деятельности:
- способностью применять современные методики и технологии организации образовательной деятельности, диагностике и оценки качества образовательного процесса по различным образовательным программам (ПК-1);
- способностью формировать образовательную среду и использовать профессиональные знания и умения в реализации задач инновационной образовательной политики (ПК-2);
- готовностью к разработке и реализации методик, технологий и приемов обучения, к анализу результатов процесса их использования в организациях, осуществляющих образовательную деятельность (ПК-4);

В результате изучения дисциплины студент должен:
знать:
- основы образования и профессиональной деятельности на разных ступенях образования;
- методологию педагогических исследований проблем образования;
- содержание, технологии, методики и формы организации учебной деятельности по физике на разных ступенях обучения;
- содержание основных разделов полного курса физики средней школы.
уметь:
- проектировать учебно-воспитательный процесс с использованием современных технологий, соответствующих общим и специфическим закономерностям и особенностям возрастного развития личности;
- внедрять инновационные приемы в педагогический процесс с целью создания условий для эффективной мотивации обучающихся;
- организовывать исследовательскую деятельность учащихся;
- организовывать проектную деятельность учащихся;
- оценивать результаты образовательного процесса;
- выстраивать перспективные линии саморазвития;

владеть:
- способами ориентации в профессиональных и научных источниках информации;
- способами осуществления психолого-педагогической поддержки и сопровождения учащихся;
- способами проектной и исследовательской деятельности в образовании;
- технологиями проведения опытно-экспериментальной работы, участия в инновационных процессах.

4. Общая трудоемкость дисциплины — 6 зачетных единиц и виды учебной работы

<table>
<thead>
<tr>
<th>Вид учебной работы</th>
<th>Трудоемкость (в соответствии с учебным планом) (час)</th>
<th>Распределение по семестрам (в соответствии с учебным планом) (ч)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего 216</td>
<td>3</td>
</tr>
<tr>
<td>Аудиторные занятия</td>
<td>48 (в т.ч. в интерак. форме - 24)</td>
<td>48 (в т.ч. в интерак. форме - 24)</td>
</tr>
<tr>
<td>Лекции</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Практические занятия</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Семинары</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Лабораторные работы</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Другие виды аудиторных работ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Другие виды работ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Самостоятельная работа</td>
<td>141</td>
<td>141</td>
</tr>
<tr>
<td>Курсовой проект (работа)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Расчетно-графические работы</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Формы текущего контроля</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Формы промежуточной аттестации в соответствии с учебным планом</td>
<td>27</td>
<td>Экзамен</td>
</tr>
</tbody>
</table>

5. Содержание программы учебной дисциплины

5.1. Содержание учебной дисциплины

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование раздела дисциплины (темы)</th>
<th>Аудиторные часы</th>
<th>Самостоя. работа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ВСЕГО</td>
<td>Лекции</td>
</tr>
<tr>
<td></td>
<td>Раздел 1. Общие вопросы теории и методики обучения физике</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Систематизация знаний по целям, методам, технологиям обучения.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Решение задач как способ овладения физическим знанием.</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Раздел 2. Методика изучения физических теорий в старшей школе</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Физика в познании окружающего мира. Механика как теория.</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Молекулярная физика и термодинамика</td>
<td>10</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Электродинамика</td>
<td>10</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Элементы теории относительности, квантовой и ядерной физики</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Раздел 3. Организация исследовательской деятельности учащихся в процессе урочной и внеурочной деятельности

| Организация исследования на уроках в основной и старшей школе | 6 | 2 | - | 4 | 2 | 16 |
| Организация проектов, элективов, конференций исследовательского характера | 6 | 2 | - | 4 | 2 | 29 |

Итого: 48/16 зач. ед. | 32 | 24/50 % | 141 |

5.2. Содержание разделов дисциплины

Раздел 1.
1.1. Введение. Общие вопросы ТГМОФ. Обобщение представлений о целях обучения физике в основной и старшей школе на основе изучения ФГОС для основной школы и проекта ФГОС для старшей школы. Подготовка разработок по основным методам обучения, их анализ. Подготовка разработок уроков, соответствующих ФГОС основной школы.
1.2. Методика решения задач. Подбор и решение разного типа задач (словесных, графических, экспериментальных и пр.) по курсу основной школы.
1.3. Физика в познании окружающего мира. Структура мышления. Модели, понятия, законы, теории.
1.4. Значение решения задач в обучении физике. Методика решения задач, типы задач.

Раздел 2. Физические теории в старшей школе.
2.1. Основные сведения о физике, как науке об окружающем мире. Систематизация и углубление знаний учащихся по механике.
2.2. Представление о молекулярной физике как о науке, изучающей микромир. Основные положения и законы молекулярной физики. Демонстрационный эксперимент. Задачи на основное уравнение МКТ, газовые законы. Основные законы термодинамики и их практическое применение. Экологические вопросы в термодинамике.
2.3. Электродинамика. Электромагнитные колебания. Электромагнитные волны. Практическое применение физических знаний. Вопросы экологии в теме. Решение задач.
2.4. Элементы теории относительности, квантовой и ядерной физики.
Постулаты и законы теории относительности. Значение теории относительности в современном мире. Квантовая механика. Лазеры. Элементы теории атомного ядра. Цепная ядерная реакция. Термоядерная реакция. Применение ядерной энергии.

Раздел 3.
3.1. Организация исследовательской деятельности школьников на уроке.
3.2. Организация исследовательской деятельности школьников вне урока.

5.3. Лабораторный практикум

<p>| № п/п | № раздела дисциплины | Наименование лабораторных работ |</p>
<table>
<thead>
<tr>
<th>1.</th>
<th>Раздел 1. Общие вопросы теории и методики обучения физике</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Подбор слайдов и методика их предъявления при организации объяснения по выбранному вопросу из темы «Механика».</td>
</tr>
<tr>
<td>2.</td>
<td>Разработка конспекта урока получения нового знания (тема выбирается самостоятельно) с подбором и использованием необходимого эксперимента.</td>
</tr>
<tr>
<td>3.</td>
<td>Разработка урока-рефлексии, подбор рефлексивных карт с компьютерной демонстрацией.</td>
</tr>
<tr>
<td>4.</td>
<td>Использование компьютера при решении задач.</td>
</tr>
<tr>
<td>5.</td>
<td>Компьютерные демонстрации практического применения механики.</td>
</tr>
<tr>
<td>6.</td>
<td>Разработка и демонстрация интеллект-карт по вопросам механики.</td>
</tr>
<tr>
<td>7.</td>
<td>Разработка интеллект-карты по теории относительности в школьном курсе с компьютерной презентацией.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>Раздел 2. Методика изучения физических теорий в старшей школе</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Подбор опытов для введения модельного представления о понятия «сила», объяснение названия опытов.</td>
</tr>
<tr>
<td>2.</td>
<td>Подбор и демонстрация опытов на введение основных положений МКТ.</td>
</tr>
<tr>
<td>3.</td>
<td>Систематизация сведений по практическому применению законов термодинамики, демонстрация слайдов.</td>
</tr>
<tr>
<td>4.</td>
<td>Подзор и демонстрация электромагнитных колебаний (виртуальный эксперимент).</td>
</tr>
<tr>
<td>5.</td>
<td>Подбор и демонстрация электромагнитных волн (виртуальный эксперимент).</td>
</tr>
<tr>
<td>6.</td>
<td>Подбор оборудования и демонстрация явления фотоэффекта.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>Раздел 3. Организация исследовательской деятельности учащихся в процессе урочной и внеурочной деятельности</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Организация конференции с презентациями по экологическим вопросам электродинамики.</td>
</tr>
<tr>
<td>2.</td>
<td>Презентация вопроса «Ядерная энергетика».</td>
</tr>
<tr>
<td>3.</td>
<td>Изучение принципа работы лазера на основе подобраны слайдов.</td>
</tr>
</tbody>
</table>

6. Учебно-методическое обеспечение самостоятельной работы по дисциплине

6.1. Основная литература по дисциплине:

6.2. Дополнительная литература:

5. Подборка журналов «Физика в школе».

6.3 Перечень ресурсов информационно-телекоммуникационной сети Интернет.

6.4. Рекомендации по использованию информационных технологий, включая перечень программного обеспечения и информационных справочных систем
7. Методические указания для обучающихся по освоению дисциплины

7.1. Методические рекомендации для студентов.

При подготовке к занятиям студентам-магистрантам необходимо изучить теоретический материал, предложенный лектором, оценить его содержательность, поставить свои вопросы к материалу, подготовить дополнительные сведения для частичного или полного разрешения поставленных образовательных проблем.

При выполнении лабораторных работ желательно вспомнить методику и технологию физического эксперимента и активно применять её на практике.

Все методические разработки должны быть зафиксированы в тетради, где должно быть оставлено место для пометок, исправлений, дополнений после аудиторного совместного обсуждения.

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

8.1. Тематика рефератов

1. Подготовить разработку урока развития практических и экспериментальных умений.
2. Разработайте контрольную работу на тему «Электродинамика». Подготовьте критерии оценивания.
3. Проанализируйте разработки по изучению основ теории относительности.
4. Применение лазеров в медицине.
5. Разработайте лекцию для населения о пользе ядерной энергетики в Томске.

8.2. Вопросы и задания для самостоятельной работы (в том числе групповой самостоятельной работы обучающихся);

1. Какие цели обучения физике вы считаете наиболее важными, обоснуйте ответ.
2. Какие цели обучения физике вам трудно реализовать, почему.
3. Проанализируйте и сравните таксономию целей по Блу му и Карпинчуку.
4. Подберите текстовые задачи по механике, предъявите алгоритм их решения.
5. Подберите качественные задачи по молекулярной физике, предъявите алгоритм их решения.
6. Подберите экспериментальные задачи по электричеству, предъявите алгоритм их решения.
7. Подготовить сообщение о вреде и пользе тепловых двигателей.
8. Кто является основоположниками электродинамики?
9. Что необходимо знать школьникам об электромагнитных колебаниях?
10. Что необходимо знать школьникам об электромагнитных волнах?
11. Какие технологические применения электродинамики наиболее важны, как их изучать в школьном курсе?
12. В чем состоит исследовательский метод обучения.
13. Как организовать исследование учащихся основной школы на уроках физики?
14. Подобрать и проанализировать разработки по организации внеурочной исследовательской деятельности школьников.

8.3. Вопросы для самопроверки, диалогов, обсуждений, дискуссий, экспертиз
Вопросы возникают во время проведения занятий.

8.4. Примеры тестов
По данному курсу тесты не предусмотрены.

8.5. Перечень вопросов для промежуточной аттестации (к экзамену)
1. Цели обучения физике в основной и профильной школе.
2. Современные технологии в обучении физике школьников. Краткая характеристика.
3. Современная рабочая программа педагога основной школы.
4. Методика решения экспериментальных задач.
5. Значение механики в курсе физики.
6. Основные понятия механики.
7. Особенности предмета изучения молекулярной физики.
8. Дедуктивный способ изучения МКТ. Вывод газовых законов.
9. Основные законы термодинамики и ее практическое применение.
10. Электродинамика как наука.
11. Условия и характеристики электрических колебаний.
12. Модельное описание электрических колебаний.
13. Модели ЭМВ. Распространение ЭМ волн.
14. Законы теории относительности.
15. Устройство лазера и применение.
16. Цепная ядерная реакция.
17. Ядерные реакции в мирных и военных целях.
18. Обучение учащихся основной школы элементам исследования.
19. Исследовательский проект, его организация.
20. Программа электива по обучению исследовательской деятельности.

8.6. Темы для написания курсовой работы
По данному курсу курсовые работы не предусмотрены.

8.7. Формы контроля самостоятельной работы
Для контроля самостоятельной работы обучающихся используются формы: письменный опрос, беседа, технология кейс-стадии, дискуссия, доклад с презентацией.

8.8. Фондо оценочных средств (ФОС)
промежуточной аттестации и текущего контроля успеваемости по дисциплине

<table>
<thead>
<tr>
<th>Компетенции</th>
<th>Список вопросов и заданий для самостоятельной работы</th>
<th>Тестовые задания</th>
<th>Экзамен</th>
</tr>
</thead>
<tbody>
<tr>
<td>ОК-2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ОК-5</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ОПК-2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ПК-1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ПК-2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ПК-4</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, федеральным государственным образовательным стандартом высшего образования по направлению подготовки 44.04.01 Педагогическое образование.

Рабочая программа учебной дисциплины составлена:

доктор педагог. наук, профессор кафедры общей физики Е.А. Румбешта

Рабочая программа учебной дисциплины утверждена на заседании кафедры общей физики
Протокол № 1 от 31.08.2015 года.

Зав. кафедрой В.Г. Тютерев

Рабочая программа учебной дисциплины одобрена учебно-методической комиссией физико-математического факультета
Протокол № 1 от 31.08.2015 года.

Председатель учебно-методической комиссии физико-математического факультета З.А. Скрипко